Fault Tolerance Techniques for Error Detection and
Correction in Systolic Arrays

Selvaganesh M
Department of ECE,
Sri Ramakrishna Engineering College,
Coimbatore, India
selvaganesh.m@srec.ac.in

Balaji S
Department of ECE,
Sri Ramakrishna Engineering College,
Coimbatore, India
balaji.2102022@srec.ac.in

Abstract—This paper presents an efficient approach for
enhancing the reliability of matrix computations performed on
systolic array architectures through matrix code-based error
detection and correction techniques. With the increasing
deployment of systolic arrays in high-performance and real-
time applications, fault tolerance has become a critical
requirement to maintain data integrity in the presence of
hardware errors. The proposed method leverages structured
redundancy and algorithmic checks to identify and correct
faults with minimal impact on computation speed and resource
usage. By reviewing existing fault-tolerant strategies and
integrating matrix coding principles, this work offers a practical
solution that improves error resilience without significantly
increasing complexity. Simulation results and analysis
demonstrate the effectiveness of the approach in maintaining
accuracy under fault conditions, making it suitable for
applications in scientific computing, Al accelerators, and
embedded systems.

Keywords—matrix computation, systolic
detection, hamming code, fault - tolerance

array, error

I. INTRODUCTION

A key operation in computer science, matrix
multiplication (MxM) supports a wide range of applications,
including computer vision, radio signal processing, financial
market analysis, and weather prediction. Due to the need for
mission-critical dependability and real-time operation,
several of these industries have extremely high requirements
for fault tolerance and computing efficiency. However,
matrix computing systems themselves are susceptible to
radiation-related defects, notably single and multi-bit upsets,
which can manifest as either an application-level problem or
a whole system-level disaster. Redundancy and advanced
error correction codes (ECCs) are typically used as traditional
defences against these vulnerabilities, despite the fact that
they significantly increase system latencies and hardware
overheads. This work addresses these problems by
introducing a novel paradigm for error detection and
correction for MxM that drastically lowers algorithmic and
architectural costs, which are an order of magnitude higher
than those of a polynomial. Our approach improves
efficiency by combining advanced matrix codes for memory
protection, a divide-symbol technique for maintaining
reliability with negligible latency, and an encoder-reuse

Abinaya R
Department of ECE,
Sri Ramakrishna Engineering College,
Coimbatore, India
abinaya.2102003@srec.ac.in

Bala Amuthan S
Department of ECE,
Sri Ramakrishna Engineering College,
Coimbatore, India
balaamuthan.2102021@srec.ac.in

strategy for reducing circuit space without compromising
encoding and decoding integrity.

Il. LITERATURE SURVEY

For systolic array-based matrix multiplication, Lu,
Su, and Huang suggest a fault-tolerant method that improves
reliability even when there are several malfunctioning
processing elements (PEs). Their approach uses a pair-
matching process in which a fault-free PE is designated to
serve as a proxy for each problematic PE, performing the
required calculations. This method reduces circuit area and
increases fault tolerance by doing away with the requirement
for a fault-free column, which was present in earlier
approaches. To strike a compromise between hardware
overhead and fault tolerance capabilities, the authors present
two pair-matching algorithms: one-dimensional and two-
dimensional. According to experimental data, this approach
is appropriate for applications where system reliability is
crucial since it not only increases fault tolerance but also
makes controller and PE design simpler. This paper
introduces two pair-matching schemes: row-based pair-
matching and column-based pair-matching [1]. Employing
two-dimensional pair-matching offers higher fault tolerance
compared to using one-dimensional pair-matching, but it also
increases the controller area[1]. Their method is two-step:
first, fault-free PEs carry out their assigned calculations; then,
they carry out the jobs of their associated faulty PEs.
Implemented using a TSMC 40nm cell library, the approach
displays better fault resilience and reduced circuit area,
making it effective for scenarios with a higher number of
faulty PEs.

The authors, Y. Wang, Y. Chen, and H. Zhou of this
work discuss the growing demand for hardware accelerators
to be reliable, particularly in systolic array processors, which
are frequently employed for high-speed matrix calculations
in fields such as scientific applications, machine learning, and
signal processing. As these systems become more
complicated and scale, errors—whether brought on by
ageing, environmental noise, or hardware flaws—can have a
big influence on the accuracy of the system. The authors
address this by proposing a fault-tolerant systolic array
architecture, which is tested and implemented with FPGA
technology. The paper's main contribution is the creation of a



systolic array processor that can maintain accuracy even
when processing elements (PEs) malfunction.

Wu et al. provide FT-GEMM, a high-performance
and fault-tolerant general matrix-matrix multiplication
(GEMM) implementation designed for x86 CPUs. By
combining memory-intensive operations into GEMM
assembly kernels, FT-GEMM incorporates fault-tolerant
functionality at the algorithmic level, addressing the
vulnerability of large-scale computing platforms to soft
errors. With little performance overhead, this approach
guarantees real-time error detection and correction. A cache-
friendly parallel execution technique is also presented by the
authors. In addition to maintaining excellent reliability under
frequent error injections, experimental assessments on Intel
Cascade Lake processors show that FT-GEMM outperforms
existing libraries such as Intel MKL, OpenBLAS, and BLIS
by 3.5% to 22.14% in both serial and parallel GEMM
operations. FT-GEMM, a high-performance GEMM being
capable of tolerating soft errors on-the-fly[3].

S. Zhang and K. Roy propose a low-overhead error
detection method tailored for systolic array-based matrix
multiplication accelerators, which are widely used in deep
learning and high-performance computing. Recognizing that
traditional fault-tolerant techniques often incur significant
resource and performance costs, the authors introduce a
lightweight scheme that detects faults during computation
with minimal hardware complexity. Their approach relies on
duplicating only selected computations and comparing
results to flag inconsistencies, rather than relying on full
redundancy. This selective strategy significantly reduces
power and area overhead while maintaining high fault
coverage. Through simulation and hardware evaluation, the
paper demonstrates that the proposed method effectively
detects errors with very limited performance impact, making
it highly suitable for energy-efficient and reliable computing
in modern Al accelerators. the work offers a scalable and
effective way to improve systolic array fault tolerance,
resulting in more durable and dependable accelerators for
high-performance computing. Systems that need both a lot of
processing power and little overhead, such Al accelerators
and embedded systems, benefit greatly from this strategy.

AXSA is a unique design for approximation systoli
c arrays that improves matrix multiplication operations' perf
ormance and power consumption, according to a work by W
aris et al.By optimising the systolic arrays' critical path time,
the scientists were able to achieve significant reductions of
up to 32% for 8-bit operations and 64% for 32bit operations.
This enhancement is made while also lowering the system's
overall power consumption.Two architectural designs, Ax1
and Ax2, are presented; Ax2 is clearly the more power
efficient design, providing an impressive 28% power reducti
on over traditional systolic arrays.According to the
Structural Similarity Index (SSIM), Ax2 only loses 5% of its
accuracy despite these energy savings, indicating that the loss
of computational precision is negligible and appropriate for
many applications that do not require precise answers.
Because of the study's obvious trade-off between accuracy,
speed, and energy efficiency, AxSA is a perfect fit for

applications where approximation is not only acceptable but
also advantageous for system performance as a whole. In the
context of contemporary, energy-conscious computing
systems, this research is especially pertinent because the
authors show how approximate computing techniques can be
incorporated into systolic array designs to produce power-
efficient hardware for signal processing and matrix
multiplication tasks.

I11. PROPOSED METHOD

By integrating a hybrid error correcting method with
Hamming and parity codes and Lightweight Algorithm-
Based Fault Tolerance (LABFT) for real-time fault detection,
the proposed method enhances the reliability of systolic
array-based matrix multiplication. Tested through Verilog
HDL for fault injection testing, the method ensures efficient
fault detection and correction without any performance loss.
For mission-critical operations, it presents a low-overhead,
high-performance solution for fault-tolerant systolic
array topologies

METHODOLOGY

1. LIGHT ABFT METHOD:

A resource-efficient fault detection method called Light
ABFT (Lightweight Algorithm-Based Fault Tolerance) was
created for matrix operations in systolic arrays, Light ABFT
minimises overhead by wusing a reduced checksum
methodology, in contrast to typical ABFT algorithms that
demand significant processing resources and additional
storage. Prior to multiplication, it calculates the row
checksum of Matrix B and the column checksum of Matrix
A, producing the anticipated output checksum. After
executing matrix multiplication, the row and column sums of
the resulting Matrix C are compared with the expected
checksums. Without having a major influence on system
performance or resource utilisation, a mismatch indicates a
computation error, allowing for the rapid and efficient
diagnosis of hardware faults.

The steps are as follows:

A. INPUT CHECK SUM GENERATION
In this step, checksums of the input matrices are calculated
to serve as a reference for verifying the correctness of the
output:
e For Matrix A: Compute the column-wise checksum
CA[j]=i=1Zm A[i][]
This results ina 1 x n vector.
e For Matrix B: Compute the row-wise checksum
RB[i]=j=1Yp B[i][j]
This results in an n x 1 vector.
These values represent the expected behavior of input
data.

B. COMPUTE EXPECTED OUTPUT

Using the above input checksums to calculate a
reference checksum that represents the expected behavior of
the final result:



Expected Checksum= CA*RB= j=13n CA[j]-RBIj]

This produces a single scalar value which acts as the
predicted total sum of the output matrix if no fault occurs
during multiplication.

C. COMPUTE MATRIX MULTIPLICATION

The actual matrix multiplication is performed using
hardware such as a systolic array, which efficiently
processes matrix elements in a pipelined and parallel
fashion:

e C[i][j]= k=1Zn A[][K]-B[K][]]
This yields the output matrix C of size mxp.

D. OUTPUT CHECKSUM CALCULATION

After computing Matrix C, generate the actual checksum by
summing either:
e All elements of Matrix C
ActualCheck sum=i=1Ym j=13p C[i][j]
Or
e  The row-wise or column-wise sum of C, depending on
implementation. This computed checksum is the actual
result of the matrix operation.

E. ERROR DETECTION

Now, compare the expected checksum (from Step 2) with the

actual checksum (from Step 4):

e If they match: The computation is considered fault-free.

e If they don’t match: An error has occurred—Ilikely due
to data corruption or hardware faults during matrix
multiplication.

2. MATRIX CODES
a) DATA MATRIX FORMATION

Prepare the matrix MxM that contains the original data to be
transmitted, stored, or processed.

dyy dip dis
M = |dyy dys dos
d3; dsp d33

Fig 1 : Data matrix
b) APPLYING HAMMING CODES ON ROWS

Generate Hamming code by adding redundant bits that allow:
e Detection of up to 2-bit errors.

e  Correction of 1-bit errors.

This transforms each row into a codeword.

Ri=[data bits+Hamming parity bits]

Now the matrix becomes wider,

di2 di3
da2
ds2 d33

hi4
hay4
h34

his
has

hss

Fig 2 : Matrix after applying hamming codes on rows

c) APPLY PARITY CODES ON COLUMNS
For each column, calculate the parity bit (even or odd) and
add it as an additional row at the bottom:

pj=d1®d2d3

Final matrix:
diy di2 diz his his
da1 do2 dz3 hoy has
ds1 ds2 d33 hzs hss
p1 P2 P P1 Ps

Fig 3: Matrix formed after applying parity codes on
columns

d) TRANSMISSION ON PROCESSING

Send or process the extended matrix. During this stage, an
error (e.g., single-bit flip) might occur due to noise, soft

faults, or hardware issues.

e) ERROR DETECTION AND CORRECTION

Once received:

e Use Hamming code (row-wise) to detect and correct any
single-bit error within a row.

o If the Hamming check fails, it tells you which bit in the
row is incorrect.

e  Flip the bit to correct it.
Use parity code (column-wise) to verify If a parity check
fails, it signals an unrepaired error (e.g., if Hamming
couldn’t detect it due to multiple-bit errors).

= Helps in localizing errors further in conjunction with row
data.

f) MATRIX RECOVERY

After correction and validation, the matrix is stripped of
parity and Hamming bits, and the original data matrix is
recovered.



3. HAMING CODES

e Hamming Code, developed in 1950 by Richard
Hamming, is a basic error correction method that can
detect double-bit and correct single-bit errors. It is
widely applied in fields where accurate data transmission
or storage is essential, including digital communications
and memory systems. Its low complexity and efficiency
make it suitable for hardware-based error correction.

e In order to monitor particular groups of data bits and
enable the detection and correction of single-bit errors,
the Hamming Code adds parity bits at powers of two
positions. The formula 2 r >m+r+1, where r is the
number of parity bits and m is the number of data bits,
is used to determine the bare minimum amount of parity
bits required.

IV. RESULTS AND DISCUSSION

Throughout testing and project development, the
task was performed under a laboratory environment with
simulation tools and industry-grade development tools. The
primary hardware platform used for implementation and
testing of the error correction and detection architecture was
an efficient and adaptable board. VHDL/Verilog code
deployment, synthesis, and simulation used toolchain tools
such as the Vivado Design Suite. The simulator was critical
in checking the logic design before hardware deployment.
Testbenches were used to simulate various fault conditions,
such as single-bit and multiple-bit faults, to check the
behavior of the system and its fault-handling capability.
These fault injection simulations allowed comprehensive
testing of the LABFT and hybrid Hamming-parity
mechanisms under a range of stress levels.

While testing hardware, the board was installed and
monitored in real-time so that system operation and error
correction response could be directly monitored. The
environment also facilitated debugging with on-chip aids,
like the Integrated Logic Analyzer (ILA), which enabled
further insight into internal signal behavior under fault.

SIMULATION - St Simaation - urctions - i - 0, 4ght oot

Fig.1 The Input Matrices A & B are Multiplied and
Accumulated using Light ABFT method

Fig.2 In p22 location Error is injected and the
Output Matrix P is obtained using Light ABFT
method

Fig.3 The Input Matrices and the Error injected
Output Matrix are compared using Light ABFT
method and Error is detected

.ight abft behav weg®
QMaal ¥ «u

Fig.4 The Output Matrix P is corrected
using Matrix Code which contains
Hamming Code for rows and Parity Code
for columns and obtains Matrix Q



ANALYSIS

TABLE 1: INPUT MATRICES

ERROR DETECTED IN
OUTPUT MATRIX

ERROR CORRECTED
OUTPUT MATRIX

P11 110 Ou 110
P12 150 O12 150
P13 190 013 190
P14 230 Q14 230
P21 60 021 60
p2o_f 70 Q22 80
P23 100 023 100
P24 120 024 120
P31 120 Qa1 120
P32 160 O3z 160
P33 200 Qa3 200
P34 240 O34 240
Pa1 90 Qa1 90
P42 120 Qa2 120
P43 150 Qa3 150
Paa 180 Qs 180

TABLE 2: ERROR DETECTED AND ERROR
CORRECTED OUTPUT MATRICES

INPUT MATRIX OF A

INPUT MATRIX OF B

an 5 b11 1
a2 10 b1z 2
a3 15 bis 3
di4 10 b14 4
az 2 b2 2
az2 4 b2 3
do3 6 23 4
A24 8 D24 5
ds1 4 31 3
as2 8 b2 4
as3 12 ba3 5
adz4 16 b34 6
41 3 ba1 4
42 6 b4z 5
a43 9 ba3 6
a4 12 b44 7

V. CONCLUSION

The proposed structure effectively combines
efficient correction procedures with lightweight real-time
error detection in a fault-tolerant systolic array architecture
for matrix multiplication. While the employment of parity
and Hamming codes offers strong error correction across all
dimensions of the computing matrix, the application of
LABFT for fault detection guarantees low performance
overhead. All things considered, the study shows a workable
and trustworthy way to improve the reliability of matrix
operations in systolic arrays, especially for crucial
applications in signal processing and embedded systems.

VI. FUTURE WORK

Future revisions of this architecture can incorporate
multi-bit error correction codes or adaptive fault tolerance
mechanisms to accommodate more error rates and
sophisticated fault models. Furthermore, incorporating
machine learning algorithms can enhance fault pattern
forecasting and facilitate dynamic corrective procedure
adaptation. For improving performance and hosting
applications in high-speed computing, Al accelerators, and
edge devices with rigorous reliability demands, the design
would be scaled to larger matrix size

REFERENCES

[1] Lu, Hsin-Chen, Liang-Ying Su, and Shih-Hsu Huang. "Highly Fault-
Tolerant Systolic-Array-Based Matrix Multiplication.” Electronics,
vol. 13, no. 9, 2024.

[2] Y. Wang, Y. Chen, and H. Zhou, "Design and Implementation of a
Fault-Tolerant Systolic Array Processor on FPGA," in Proc. IEEE Int.
Conf. Field-Programmable Technology (FPT), 2018, pp.

[3] S.Wu, Y. Zhai, J. Huang, Z. Jian, and Z. Chen, "FT-GEMM: A Fault
Tolerant High Performance GEMM Implementation on x86 CPUs,"
presented at the Proceedings of the 28th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP '23),
Montreal, QC, Canada, Feb. 2023.

[4] S. Zhang and K. Roy, "A Low-Overhead Error Detection Scheme for
Systolic Array-Based Matrix Multiplication Accelerators,” IEEE
Trans. Very Large Scale Integration (VLSI) Syst., vol. 29, no. 10, pp.
2671-2683, Oct. 2021.

[5] H. Waris, C. Wang, W. Liu, and F. Lombardi, "AxSA: On the Design
of High-Performance and Power-Efficient Approximate Systolic
Arrays for Matrix Multiplication,” Journal of Signal Processing
Systems, vol. 93, pp. 605-615, Jun. 2021.

[6] J. de Fine Licht, G. Kwasniewski, and T. Hoefler, "Flexible
Communication Avoiding Matrix Multiplication on FPGA with High-
Level Synthesis," in Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays
(FPGA'20), Seaside, CA, USA, Feb. 2020.

[7] M. G.K.R.Reddy, V. R. Pudi, and K. L. Hsiao, "Matrix-Based Error
Detection and Correction for Parallel Computations,” IEEE
Transactions on Parallel and Distributed Systems, vol. 12, no. 6, pp.
618-631, Jun. 2001.

[8] S. K. Gupta, M. G. Jafari, and M. R. Hashemi, "A Fault-Tolerant
Algorithm for Matrix Multiplication Using Systolic Arrays," IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21,
no. 1, pp. 104-116, Jan. 2013.



