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Abstract—This paper presents an efficient approach for 

enhancing the reliability of matrix computations performed on 

systolic array architectures through matrix code-based error 

detection and correction techniques. With the increasing 

deployment of systolic arrays in high-performance and real-

time applications, fault tolerance has become a critical 

requirement to maintain data integrity in the presence of 

hardware errors. The proposed method leverages structured 

redundancy and algorithmic checks to identify and correct 

faults with minimal impact on computation speed and resource 

usage. By reviewing existing fault-tolerant strategies and 

integrating matrix coding principles, this work offers a practical 

solution that improves error resilience without significantly 

increasing complexity. Simulation results and analysis 

demonstrate the effectiveness of the approach in maintaining 

accuracy under fault conditions, making it suitable for 

applications in scientific computing, AI accelerators, and 

embedded systems. 
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I. INTRODUCTION 

A key operation in computer science, matrix 

multiplication (MxM) supports a wide range of applications, 

including computer vision, radio signal processing, financial 

market analysis, and weather prediction. Due to the need for 

mission-critical dependability and real-time operation, 

several of these industries have extremely high requirements 

for fault tolerance and computing efficiency. However, 

matrix computing systems themselves are susceptible to 

radiation-related defects, notably single and multi-bit upsets, 

which can manifest as either an application-level problem or 

a whole system-level disaster. Redundancy and advanced 

error correction codes (ECCs) are typically used as traditional 

defences against these vulnerabilities, despite the fact that 

they significantly increase system latencies and hardware 

overheads. This work addresses these problems by 

introducing a novel paradigm for error detection and 

correction for MxM that drastically lowers algorithmic and 

architectural costs, which are an order of magnitude higher 

than those of a polynomial. Our approach improves 

efficiency by combining advanced matrix codes for memory 

protection, a divide-symbol technique for maintaining 

reliability with negligible latency, and an encoder-reuse 

strategy for reducing circuit space without compromising 

encoding and decoding integrity.  

II. LITERATURE SURVEY 

For systolic array-based matrix multiplication, Lu, 

Su, and Huang suggest a fault-tolerant method that improves 

reliability even when there are several malfunctioning 

processing elements (PEs). Their approach uses a pair-

matching process in which a fault-free PE is designated to 

serve as a proxy for each problematic PE, performing the 

required calculations. This method reduces circuit area and 

increases fault tolerance by doing away with the requirement 

for a fault-free column, which was present in earlier 

approaches. To strike a compromise between hardware 

overhead and fault tolerance capabilities, the authors present 

two pair-matching algorithms: one-dimensional and two-

dimensional. According to experimental data, this approach 

is appropriate for applications where system reliability is 

crucial since it not only increases fault tolerance but also 

makes controller and PE design simpler. This paper 

introduces two pair-matching schemes: row-based pair-

matching and column-based pair-matching [1]. Employing 

two-dimensional pair-matching offers higher fault tolerance 

compared to using one-dimensional pair-matching, but it also 

increases the controller area[1]. Their method is two-step: 

first, fault-free PEs carry out their assigned calculations; then, 

they carry out the jobs of their associated faulty PEs. 

Implemented using a TSMC 40nm cell library, the approach 

displays better fault resilience and reduced circuit area, 

making it effective for scenarios with a higher number of 

faulty PEs. 

 
The authors, Y. Wang, Y. Chen, and H. Zhou of this 

work discuss the growing demand for hardware accelerators 

to be reliable, particularly in systolic array processors, which 

are frequently employed for high-speed matrix calculations 

in fields such as scientific applications, machine learning, and 

signal processing. As these systems become more 

complicated and scale, errors—whether brought on by 

ageing, environmental noise, or hardware flaws—can have a 

big influence on the accuracy of the system. The authors 

address this by proposing a fault-tolerant systolic array 

architecture, which is tested and implemented with FPGA 

technology. The paper's main contribution is the creation of a 



systolic array processor that can maintain accuracy even 

when processing elements (PEs) malfunction. 

 

Wu et al. provide FT-GEMM, a high-performance 

and fault-tolerant general matrix-matrix multiplication 

(GEMM) implementation designed for x86 CPUs. By 

combining memory-intensive operations into GEMM 

assembly kernels, FT-GEMM incorporates fault-tolerant 

functionality at the algorithmic level, addressing the 

vulnerability of large-scale computing platforms to soft 

errors. With little performance overhead, this approach 

guarantees real-time error detection and correction. A cache-

friendly parallel execution technique is also presented by the 

authors. In addition to maintaining excellent reliability under 

frequent error injections, experimental assessments on Intel 

Cascade Lake processors show that FT-GEMM outperforms 

existing libraries such as Intel MKL, OpenBLAS, and BLIS 

by 3.5% to 22.14% in both serial and parallel GEMM 

operations. FT-GEMM, a high-performance GEMM being 

capable of tolerating soft errors on-the-fly[3]. 

 

 

      S. Zhang and K. Roy propose a low-overhead error 

detection method tailored for systolic array-based matrix 

multiplication accelerators, which are widely used in deep 

learning and high-performance computing. Recognizing that 

traditional fault-tolerant techniques often incur significant 

resource and performance costs, the authors introduce a 

lightweight scheme that detects faults during computation 

with minimal hardware complexity. Their approach relies on 

duplicating only selected computations and comparing 

results to flag inconsistencies, rather than relying on full 

redundancy. This selective strategy significantly reduces 

power and area overhead while maintaining high fault 

coverage. Through simulation and hardware evaluation, the 

paper demonstrates that the proposed method effectively 

detects errors with very limited performance impact, making 

it highly suitable for energy-efficient and reliable computing 

in modern AI accelerators. the work offers a scalable and 

effective way to improve systolic array fault tolerance, 

resulting in more durable and dependable accelerators for 

high-performance computing. Systems that need both a lot of 

processing power and little overhead, such AI accelerators 

and embedded systems, benefit greatly from this strategy. 

 

 AxSA is a unique design for approximation systoli

c arrays that improves matrix multiplication operations' perf

ormance and power consumption, according to a work by W

aris et al.By optimising the systolic arrays' critical path time,

 the scientists were able to achieve significant reductions of 

up to 32% for 8-bit operations and 64% for 32bit operations. 

This enhancement is made while also lowering the system's 

overall power consumption.Two architectural designs, Ax1 

and Ax2, are presented; Ax2 is clearly the more power 

efficient design, providing an impressive 28% power reducti

on over traditional systolic arrays.According to the 

 Structural Similarity Index (SSIM), Ax2 only loses 5% of its 

accuracy despite these energy savings, indicating that the loss 

of computational precision is negligible and appropriate for 

many applications that do not require precise answers. 

Because of the study's obvious trade-off between accuracy, 

speed, and energy efficiency, AxSA is a perfect fit for 

applications where approximation is not only acceptable but 

also advantageous for system performance as a whole. In the 

context of contemporary, energy-conscious computing 

systems, this research is especially pertinent because the 

authors show how approximate computing techniques can be 

incorporated into systolic array designs to produce power-

efficient hardware for signal processing and matrix 

multiplication tasks. 

 

III. PROPOSED METHOD 

       By integrating a hybrid error correcting method with 

Hamming and parity codes and Lightweight Algorithm-

Based Fault Tolerance (LABFT) for real-time fault detection, 

the proposed method enhances the reliability of systolic 

array-based matrix multiplication. Tested through Verilog 

HDL for fault injection testing, the method ensures efficient 

fault detection and correction without any performance loss. 

For mission-critical operations, it presents a low-overhead, 

high-performance solution for fault-tolerant systolic 

array topologies 

 

  METHODOLOGY 

 

1. LIGHT ABFT METHOD: 

 

A resource-efficient fault detection method called Light 

ABFT (Lightweight Algorithm-Based Fault Tolerance) was 

created for matrix operations in systolic arrays, Light ABFT 

minimises overhead by using a reduced checksum 

methodology, in contrast to typical ABFT algorithms that 

demand significant processing resources and additional 

storage. Prior to multiplication, it calculates the row 

checksum of Matrix B and the column checksum of Matrix 

A, producing the anticipated output checksum. After 

executing matrix multiplication, the row and column sums of 

the resulting Matrix C are compared with the expected 

checksums. Without having a major influence on system 

performance or resource utilisation, a mismatch indicates a 

computation error, allowing for the rapid and efficient 

diagnosis of hardware faults. 

The steps are as follows: 

 

A. INPUT CHECK SUM GENERATION 

In this step, checksums of the input matrices are calculated 

to serve as a reference for verifying the correctness of the 

output: 

• For Matrix A: Compute the column-wise checksum 

      CA[j]=i=1∑m A[i][j]  

     This results in a 1 × n vector. 

• For Matrix B: Compute the row-wise checksum 

RB[i]=j=1∑p B[i][j] 

       This results in an n × 1 vector. 

     These values represent the expected behavior of input   

     data. 

 

B. COMPUTE EXPECTED OUTPUT 

Using the above input checksums to calculate a 

reference checksum that represents the expected behavior of 

the final result: 

 



  Expected Checksum= CA*RB= j=1∑n CA[j]⋅RB[j] 

 

This produces a single scalar value which acts as the 

predicted total sum of the output matrix if no fault occurs 

during multiplication. 

 

C. COMPUTE MATRIX MULTIPLICATION 

 

The actual matrix multiplication is performed using 

hardware such as a systolic array, which efficiently 

processes matrix elements in a pipelined and parallel 

fashion: 

• C[i][j]= k=1∑n A[i][k]⋅B[k][j] 

This yields the output matrix C of size m×p. 

 

D. OUTPUT CHECKSUM CALCULATION 

 

After computing Matrix C, generate the actual checksum by 

summing either: 

• All elements of Matrix C 

      ActualCheck sum= i=1∑m j=1∑p C[i][j] 

                      Or 

• The row-wise or column-wise sum of C, depending on 

implementation. This computed checksum is the actual 

result of the matrix operation. 

 

E. ERROR DETECTION 

 

Now, compare the expected checksum (from Step 2) with the 

actual checksum (from Step 4): 

• If they match: The computation is considered fault-free. 

• If they don’t match: An error has occurred—likely due 

to data corruption or hardware faults during matrix 

multiplication. 

 

2. MATRIX CODES 

 

a) DATA MATRIX FORMATION 

 

 Prepare the matrix MxM that contains the original data to be 

transmitted, stored, or processed. 

                           Fig 1 : Data matrix 

b) APPLYING HAMMING CODES ON ROWS 

 

Generate Hamming code by adding redundant bits that allow: 

• Detection of up to 2-bit errors. 

• Correction of 1-bit errors. 

This transforms each row into a codeword. 

Ri=[data bits+Hamming parity bits]  

 Now the matrix becomes wider, 

Fig 2 : Matrix after applying hamming codes on rows 

c) APPLY PARITY CODES ON COLUMNS 

For each column, calculate the parity bit (even or odd)  and 

add it as an additional row at the bottom: 

pj=d1⊕d2⊕d3 

 Final matrix: 

         Fig  3: Matrix formed after applying parity codes on  

        columns 

 

d) TRANSMISSION ON PROCESSING 

 

Send or process the extended matrix. During this stage, an 

error (e.g., single-bit flip) might occur due to noise, soft 

faults, or hardware issues. 

 
e) ERROR DETECTION AND CORRECTION 

 

Once received: 

• Use Hamming code (row-wise) to detect and correct any 

single-bit error within a row. 

• If the Hamming check fails, it tells you which bit in the 

row is incorrect. 

• Flip the bit to correct it. 

▪ Use parity code (column-wise) to verify If a parity check 

fails, it signals an unrepaired error (e.g., if Hamming 

couldn’t detect it due to multiple-bit errors). 

▪ Helps in localizing errors further in conjunction with row 

data. 

 

 

f) MATRIX RECOVERY 

 

After correction and validation, the matrix is stripped of 

parity and Hamming bits, and the original data matrix is 

recovered.  

 

 



3. HAMING CODES 

 

• Hamming Code, developed in 1950 by Richard 

Hamming, is a basic error correction method that can 

detect double-bit and correct single-bit errors. It is 

widely applied in fields where accurate data transmission 

or storage is essential, including digital communications 

and memory systems. Its low complexity and efficiency 

make it suitable for hardware-based error correction. 

• In order to monitor particular groups of data bits and 

enable the detection and correction of single-bit errors, 

the Hamming Code adds parity bits at powers of two 

positions. The formula 2 r ≥m+r+1, where r is the 

number of parity bits and m is the number of data bits, 

is used to determine the bare minimum amount of parity 

bits required. 

IV. RESULTS AND DISCUSSION 

Throughout testing and project development, the 

task was performed under a laboratory environment with 

simulation tools and industry-grade development tools. The 

primary hardware platform used for implementation and 

testing of the error correction and detection architecture was 

an efficient and adaptable board. VHDL/Verilog code 

deployment, synthesis, and simulation used toolchain tools 

such as the Vivado Design Suite. The simulator was critical 

in checking the logic design before hardware deployment. 

Testbenches were used to simulate various fault conditions, 

such as single-bit and multiple-bit faults, to check the 

behavior of the system and its fault-handling capability. 

These fault injection simulations allowed comprehensive 

testing of the LABFT and hybrid Hamming-parity 

mechanisms under a range of stress levels. 

While testing hardware, the board was installed and 

monitored in real-time so that system operation and error 

correction response could be directly monitored. The 

environment also facilitated debugging with on-chip aids, 

like the Integrated Logic Analyzer (ILA), which enabled 

further insight into internal signal behavior under fault. 

 

 
Fig.1 The Input Matrices A & B are Multiplied and 

Accumulated using Light ABFT method 
 

 

 

 
Fig.2 In p22 location Error is injected and the 

Output Matrix P is obtained using Light ABFT 

method 

 
Fig.3 The Input Matrices and the Error injected 

Output Matrix are compared using Light ABFT 

method and Error is detected 

 

Fig.4 The Output Matrix P is corrected 

using Matrix Code which contains 

Hamming Code for rows and Parity Code 

for columns and obtains Matrix Q 

 

 

 

 

 

 

 

 

 

 

 
 

 



ANALYSIS 

 
 

TABLE 1: INPUT MATRICES 

 

 

 

 

TABLE 2: ERROR DETECTED AND ERROR 

CORRECTED OUTPUT MATRICES 

 

 

 

V. CONCLUSION 

The proposed structure effectively combines 

efficient correction procedures with lightweight real-time 

error detection in a fault-tolerant systolic array architecture 

for matrix multiplication. While the employment of parity 

and Hamming codes offers strong error correction across all 

dimensions of the computing matrix, the application of 

LABFT for fault detection guarantees low performance 

overhead. All things considered, the study shows a workable 

and trustworthy way to improve the reliability of matrix 

operations in systolic arrays, especially for crucial 

applications in signal processing and embedded systems. 

 

VI. FUTURE WORK 

             Future revisions of this architecture can incorporate 

multi-bit error correction codes or adaptive fault tolerance 

mechanisms to accommodate more error rates and 

sophisticated fault models. Furthermore, incorporating 

machine learning algorithms can enhance fault pattern 

forecasting and facilitate dynamic corrective procedure 

adaptation. For improving performance and hosting 

applications in high-speed computing, AI accelerators, and 

edge devices with rigorous reliability demands, the design 

would be scaled to larger matrix  size 
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ERROR DETECTED IN 

OUTPUT MATRIX 

ERROR CORRECTED 

OUTPUT MATRIX 

p11 110 q11 110 

p12 150 q12 150 

p13 190 q13 190 

p14 230 q14 230 

p21 60 q21 60 

p22_f 70 q22 80 

p23 100 q23 100 

p24 120 q24 120 

p31 120 q31 120 

p32 160 q32 160 

p33 200 q33 200 

p34 240 q34 240 

p41 90 q41 90 

p42 120 q42 120 

p43 150 q43 150 

p44 180 q44 180 

INPUT MATRIX OF A INPUT MATRIX OF B 

 a11 5 b11 1 

a12 10 b12 2 

a13 15 b13 3 

a14 10 b14 4 

a21 2 b21 2 

a22 4 b22 3 

a23 6 b23 4 

a24 8 b24 5 

a31 4 b31 3 

a32 8 b32 4 

a33 12 b33 5 

a34 16 b34 6 

a41 3 b41 4 

a42 6 b42 5 

a43 9 b43 6 

a44 12 b44 7 


