

Fault Tolerance Techniques for Error Detection and

Correction in Systolic Arrays

Selvaganesh M

Department of ECE,

Sri Ramakrishna Engineering College,

Coimbatore, India

selvaganesh.m@srec.ac.in

Balaji S

Department of ECE,

Sri Ramakrishna Engineering College,

Coimbatore, India

balaji.2102022@srec.ac.in

Abinaya R

Department of ECE,

Sri Ramakrishna Engineering College,

Coimbatore, India

abinaya.2102003@srec.ac.in

Bala Amuthan S

Department of ECE,

Sri Ramakrishna Engineering College,

Coimbatore, India

balaamuthan.2102021@srec.ac.in

Abstract—This paper presents an efficient approach for

enhancing the reliability of matrix computations performed on

systolic array architectures through matrix code-based error

detection and correction techniques. With the increasing

deployment of systolic arrays in high-performance and real-

time applications, fault tolerance has become a critical

requirement to maintain data integrity in the presence of

hardware errors. The proposed method leverages structured

redundancy and algorithmic checks to identify and correct

faults with minimal impact on computation speed and resource

usage. By reviewing existing fault-tolerant strategies and

integrating matrix coding principles, this work offers a practical

solution that improves error resilience without significantly

increasing complexity. Simulation results and analysis

demonstrate the effectiveness of the approach in maintaining

accuracy under fault conditions, making it suitable for

applications in scientific computing, AI accelerators, and

embedded systems.

Keywords—matrix computation, systolic array, error

detection, hamming code, fault - tolerance

I. INTRODUCTION

A key operation in computer science, matrix

multiplication (MxM) supports a wide range of applications,

including computer vision, radio signal processing, financial

market analysis, and weather prediction. Due to the need for

mission-critical dependability and real-time operation,

several of these industries have extremely high requirements

for fault tolerance and computing efficiency. However,

matrix computing systems themselves are susceptible to

radiation-related defects, notably single and multi-bit upsets,

which can manifest as either an application-level problem or

a whole system-level disaster. Redundancy and advanced

error correction codes (ECCs) are typically used as traditional

defences against these vulnerabilities, despite the fact that

they significantly increase system latencies and hardware

overheads. This work addresses these problems by

introducing a novel paradigm for error detection and

correction for MxM that drastically lowers algorithmic and

architectural costs, which are an order of magnitude higher

than those of a polynomial. Our approach improves

efficiency by combining advanced matrix codes for memory

protection, a divide-symbol technique for maintaining

reliability with negligible latency, and an encoder-reuse

strategy for reducing circuit space without compromising

encoding and decoding integrity.

II. LITERATURE SURVEY

For systolic array-based matrix multiplication, Lu,

Su, and Huang suggest a fault-tolerant method that improves

reliability even when there are several malfunctioning

processing elements (PEs). Their approach uses a pair-

matching process in which a fault-free PE is designated to

serve as a proxy for each problematic PE, performing the

required calculations. This method reduces circuit area and

increases fault tolerance by doing away with the requirement

for a fault-free column, which was present in earlier

approaches. To strike a compromise between hardware

overhead and fault tolerance capabilities, the authors present

two pair-matching algorithms: one-dimensional and two-

dimensional. According to experimental data, this approach

is appropriate for applications where system reliability is

crucial since it not only increases fault tolerance but also

makes controller and PE design simpler. This paper

introduces two pair-matching schemes: row-based pair-

matching and column-based pair-matching [1]. Employing

two-dimensional pair-matching offers higher fault tolerance

compared to using one-dimensional pair-matching, but it also

increases the controller area[1]. Their method is two-step:

first, fault-free PEs carry out their assigned calculations; then,

they carry out the jobs of their associated faulty PEs.

Implemented using a TSMC 40nm cell library, the approach

displays better fault resilience and reduced circuit area,

making it effective for scenarios with a higher number of

faulty PEs.

The authors, Y. Wang, Y. Chen, and H. Zhou of this

work discuss the growing demand for hardware accelerators

to be reliable, particularly in systolic array processors, which

are frequently employed for high-speed matrix calculations

in fields such as scientific applications, machine learning, and

signal processing. As these systems become more

complicated and scale, errors—whether brought on by

ageing, environmental noise, or hardware flaws—can have a

big influence on the accuracy of the system. The authors

address this by proposing a fault-tolerant systolic array

architecture, which is tested and implemented with FPGA

technology. The paper's main contribution is the creation of a

systolic array processor that can maintain accuracy even

when processing elements (PEs) malfunction.

Wu et al. provide FT-GEMM, a high-performance

and fault-tolerant general matrix-matrix multiplication

(GEMM) implementation designed for x86 CPUs. By

combining memory-intensive operations into GEMM

assembly kernels, FT-GEMM incorporates fault-tolerant

functionality at the algorithmic level, addressing the

vulnerability of large-scale computing platforms to soft

errors. With little performance overhead, this approach

guarantees real-time error detection and correction. A cache-

friendly parallel execution technique is also presented by the

authors. In addition to maintaining excellent reliability under

frequent error injections, experimental assessments on Intel

Cascade Lake processors show that FT-GEMM outperforms

existing libraries such as Intel MKL, OpenBLAS, and BLIS

by 3.5% to 22.14% in both serial and parallel GEMM

operations. FT-GEMM, a high-performance GEMM being

capable of tolerating soft errors on-the-fly[3].

 S. Zhang and K. Roy propose a low-overhead error

detection method tailored for systolic array-based matrix

multiplication accelerators, which are widely used in deep

learning and high-performance computing. Recognizing that

traditional fault-tolerant techniques often incur significant

resource and performance costs, the authors introduce a

lightweight scheme that detects faults during computation

with minimal hardware complexity. Their approach relies on

duplicating only selected computations and comparing

results to flag inconsistencies, rather than relying on full

redundancy. This selective strategy significantly reduces

power and area overhead while maintaining high fault

coverage. Through simulation and hardware evaluation, the

paper demonstrates that the proposed method effectively

detects errors with very limited performance impact, making

it highly suitable for energy-efficient and reliable computing

in modern AI accelerators. the work offers a scalable and

effective way to improve systolic array fault tolerance,

resulting in more durable and dependable accelerators for

high-performance computing. Systems that need both a lot of

processing power and little overhead, such AI accelerators

and embedded systems, benefit greatly from this strategy.

 AxSA is a unique design for approximation systoli

c arrays that improves matrix multiplication operations' perf

ormance and power consumption, according to a work by W

aris et al.By optimising the systolic arrays' critical path time,

 the scientists were able to achieve significant reductions of

up to 32% for 8-bit operations and 64% for 32bit operations.

This enhancement is made while also lowering the system's

overall power consumption.Two architectural designs, Ax1

and Ax2, are presented; Ax2 is clearly the more power

efficient design, providing an impressive 28% power reducti

on over traditional systolic arrays.According to the

 Structural Similarity Index (SSIM), Ax2 only loses 5% of its

accuracy despite these energy savings, indicating that the loss

of computational precision is negligible and appropriate for

many applications that do not require precise answers.

Because of the study's obvious trade-off between accuracy,

speed, and energy efficiency, AxSA is a perfect fit for

applications where approximation is not only acceptable but

also advantageous for system performance as a whole. In the

context of contemporary, energy-conscious computing

systems, this research is especially pertinent because the

authors show how approximate computing techniques can be

incorporated into systolic array designs to produce power-

efficient hardware for signal processing and matrix

multiplication tasks.

III. PROPOSED METHOD

 By integrating a hybrid error correcting method with

Hamming and parity codes and Lightweight Algorithm-

Based Fault Tolerance (LABFT) for real-time fault detection,

the proposed method enhances the reliability of systolic

array-based matrix multiplication. Tested through Verilog

HDL for fault injection testing, the method ensures efficient

fault detection and correction without any performance loss.

For mission-critical operations, it presents a low-overhead,

high-performance solution for fault-tolerant systolic

array topologies

 METHODOLOGY

1. LIGHT ABFT METHOD:

A resource-efficient fault detection method called Light

ABFT (Lightweight Algorithm-Based Fault Tolerance) was

created for matrix operations in systolic arrays, Light ABFT

minimises overhead by using a reduced checksum

methodology, in contrast to typical ABFT algorithms that

demand significant processing resources and additional

storage. Prior to multiplication, it calculates the row

checksum of Matrix B and the column checksum of Matrix

A, producing the anticipated output checksum. After

executing matrix multiplication, the row and column sums of

the resulting Matrix C are compared with the expected

checksums. Without having a major influence on system

performance or resource utilisation, a mismatch indicates a

computation error, allowing for the rapid and efficient

diagnosis of hardware faults.

The steps are as follows:

A. INPUT CHECK SUM GENERATION

In this step, checksums of the input matrices are calculated

to serve as a reference for verifying the correctness of the

output:

• For Matrix A: Compute the column-wise checksum

 CA[j]=i=1∑m A[i][j]

 This results in a 1 × n vector.

• For Matrix B: Compute the row-wise checksum

RB[i]=j=1∑p B[i][j]

 This results in an n × 1 vector.

 These values represent the expected behavior of input

 data.

B. COMPUTE EXPECTED OUTPUT

Using the above input checksums to calculate a

reference checksum that represents the expected behavior of

the final result:

 Expected Checksum= CA*RB= j=1∑n CA[j]⋅RB[j]

This produces a single scalar value which acts as the

predicted total sum of the output matrix if no fault occurs

during multiplication.

C. COMPUTE MATRIX MULTIPLICATION

The actual matrix multiplication is performed using

hardware such as a systolic array, which efficiently

processes matrix elements in a pipelined and parallel

fashion:

• C[i][j]= k=1∑n A[i][k]⋅B[k][j]

This yields the output matrix C of size m×p.

D. OUTPUT CHECKSUM CALCULATION

After computing Matrix C, generate the actual checksum by

summing either:

• All elements of Matrix C

 ActualCheck sum= i=1∑m j=1∑p C[i][j]

 Or

• The row-wise or column-wise sum of C, depending on

implementation. This computed checksum is the actual

result of the matrix operation.

E. ERROR DETECTION

Now, compare the expected checksum (from Step 2) with the

actual checksum (from Step 4):

• If they match: The computation is considered fault-free.

• If they don’t match: An error has occurred—likely due

to data corruption or hardware faults during matrix

multiplication.

2. MATRIX CODES

a) DATA MATRIX FORMATION

 Prepare the matrix MxM that contains the original data to be

transmitted, stored, or processed.

 Fig 1 : Data matrix

b) APPLYING HAMMING CODES ON ROWS

Generate Hamming code by adding redundant bits that allow:

• Detection of up to 2-bit errors.

• Correction of 1-bit errors.

This transforms each row into a codeword.

Ri=[data bits+Hamming parity bits]

 Now the matrix becomes wider,

Fig 2 : Matrix after applying hamming codes on rows

c) APPLY PARITY CODES ON COLUMNS

For each column, calculate the parity bit (even or odd) and

add it as an additional row at the bottom:

pj=d1⊕d2⊕d3

 Final matrix:

 Fig 3: Matrix formed after applying parity codes on

 columns

d) TRANSMISSION ON PROCESSING

Send or process the extended matrix. During this stage, an

error (e.g., single-bit flip) might occur due to noise, soft

faults, or hardware issues.

e) ERROR DETECTION AND CORRECTION

Once received:

• Use Hamming code (row-wise) to detect and correct any

single-bit error within a row.

• If the Hamming check fails, it tells you which bit in the

row is incorrect.

• Flip the bit to correct it.

▪ Use parity code (column-wise) to verify If a parity check

fails, it signals an unrepaired error (e.g., if Hamming

couldn’t detect it due to multiple-bit errors).

▪ Helps in localizing errors further in conjunction with row

data.

f) MATRIX RECOVERY

After correction and validation, the matrix is stripped of

parity and Hamming bits, and the original data matrix is

recovered.

3. HAMING CODES

• Hamming Code, developed in 1950 by Richard

Hamming, is a basic error correction method that can

detect double-bit and correct single-bit errors. It is

widely applied in fields where accurate data transmission

or storage is essential, including digital communications

and memory systems. Its low complexity and efficiency

make it suitable for hardware-based error correction.

• In order to monitor particular groups of data bits and

enable the detection and correction of single-bit errors,

the Hamming Code adds parity bits at powers of two

positions. The formula 2 r ≥m+r+1, where r is the

number of parity bits and m is the number of data bits,

is used to determine the bare minimum amount of parity

bits required.

IV. RESULTS AND DISCUSSION

Throughout testing and project development, the

task was performed under a laboratory environment with

simulation tools and industry-grade development tools. The

primary hardware platform used for implementation and

testing of the error correction and detection architecture was

an efficient and adaptable board. VHDL/Verilog code

deployment, synthesis, and simulation used toolchain tools

such as the Vivado Design Suite. The simulator was critical

in checking the logic design before hardware deployment.

Testbenches were used to simulate various fault conditions,

such as single-bit and multiple-bit faults, to check the

behavior of the system and its fault-handling capability.

These fault injection simulations allowed comprehensive

testing of the LABFT and hybrid Hamming-parity

mechanisms under a range of stress levels.

While testing hardware, the board was installed and

monitored in real-time so that system operation and error

correction response could be directly monitored. The

environment also facilitated debugging with on-chip aids,

like the Integrated Logic Analyzer (ILA), which enabled

further insight into internal signal behavior under fault.

Fig.1 The Input Matrices A & B are Multiplied and

Accumulated using Light ABFT method

Fig.2 In p22 location Error is injected and the

Output Matrix P is obtained using Light ABFT

method

Fig.3 The Input Matrices and the Error injected

Output Matrix are compared using Light ABFT

method and Error is detected

Fig.4 The Output Matrix P is corrected

using Matrix Code which contains

Hamming Code for rows and Parity Code

for columns and obtains Matrix Q

ANALYSIS

TABLE 1: INPUT MATRICES

TABLE 2: ERROR DETECTED AND ERROR

CORRECTED OUTPUT MATRICES

V. CONCLUSION

The proposed structure effectively combines

efficient correction procedures with lightweight real-time

error detection in a fault-tolerant systolic array architecture

for matrix multiplication. While the employment of parity

and Hamming codes offers strong error correction across all

dimensions of the computing matrix, the application of

LABFT for fault detection guarantees low performance

overhead. All things considered, the study shows a workable

and trustworthy way to improve the reliability of matrix

operations in systolic arrays, especially for crucial

applications in signal processing and embedded systems.

VI. FUTURE WORK

 Future revisions of this architecture can incorporate

multi-bit error correction codes or adaptive fault tolerance

mechanisms to accommodate more error rates and

sophisticated fault models. Furthermore, incorporating

machine learning algorithms can enhance fault pattern

forecasting and facilitate dynamic corrective procedure

adaptation. For improving performance and hosting

applications in high-speed computing, AI accelerators, and

edge devices with rigorous reliability demands, the design

would be scaled to larger matrix size

REFERENCES

[1] Lu, Hsin-Chen, Liang-Ying Su, and Shih-Hsu Huang. "Highly Fault-

Tolerant Systolic-Array-Based Matrix Multiplication." Electronics,
vol. 13, no. 9, 2024.

[2] Y. Wang, Y. Chen, and H. Zhou, "Design and Implementation of a
Fault-Tolerant Systolic Array Processor on FPGA," in Proc. IEEE Int.
Conf. Field-Programmable Technology (FPT), 2018, pp.

[3] S. Wu, Y. Zhai, J. Huang, Z. Jian, and Z. Chen, "FT-GEMM: A Fault
Tolerant High Performance GEMM Implementation on x86 CPUs,"
presented at the Proceedings of the 28th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP '23),
Montreal, QC, Canada, Feb. 2023.

[4] S. Zhang and K. Roy, "A Low-Overhead Error Detection Scheme for
Systolic Array-Based Matrix Multiplication Accelerators," IEEE
Trans. Very Large Scale Integration (VLSI) Syst., vol. 29, no. 10, pp.
2671-2683, Oct. 2021.

[5] H. Waris, C. Wang, W. Liu, and F. Lombardi, "AxSA: On the Design
of High-Performance and Power-Efficient Approximate Systolic
Arrays for Matrix Multiplication," Journal of Signal Processing
Systems, vol. 93, pp. 605–615, Jun. 2021.

[6] J. de Fine Licht, G. Kwasniewski, and T. Hoefler, "Flexible
Communication Avoiding Matrix Multiplication on FPGA with High-
Level Synthesis," in Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays
(FPGA'20), Seaside, CA, USA, Feb. 2020.

[7] M. G. K. R. Reddy, V. R. Pudi, and K. L. Hsiao, "Matrix-Based Error
Detection and Correction for Parallel Computations," IEEE
Transactions on Parallel and Distributed Systems, vol. 12, no. 6, pp.
618-631, Jun. 2001.

[8] S. K. Gupta, M. G. Jafari, and M. R. Hashemi, "A Fault-Tolerant
Algorithm for Matrix Multiplication Using Systolic Arrays," IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21,
no. 1, pp. 104-116, Jan. 2013.

ERROR DETECTED IN

OUTPUT MATRIX

ERROR CORRECTED

OUTPUT MATRIX

p11 110 q11 110

p12 150 q12 150

p13 190 q13 190

p14 230 q14 230

p21 60 q21 60

p22_f 70 q22 80

p23 100 q23 100

p24 120 q24 120

p31 120 q31 120

p32 160 q32 160

p33 200 q33 200

p34 240 q34 240

p41 90 q41 90

p42 120 q42 120

p43 150 q43 150

p44 180 q44 180

INPUT MATRIX OF A INPUT MATRIX OF B

 a11 5 b11 1

a12 10 b12 2

a13 15 b13 3

a14 10 b14 4

a21 2 b21 2

a22 4 b22 3

a23 6 b23 4

a24 8 b24 5

a31 4 b31 3

a32 8 b32 4

a33 12 b33 5

a34 16 b34 6

a41 3 b41 4

a42 6 b42 5

a43 9 b43 6

a44 12 b44 7

